50 W, 5.0 - 5.9 GHz, GaN MMIC, Power Amplifier

Description

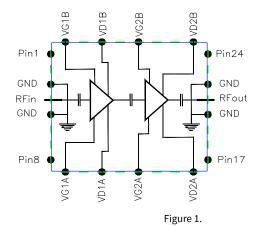
Cree's CMPA5259050S is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). This MMIC contains a two-stage reactively matched amplifier design approach enabling high power and power added efficiency to be achieved in a 5 mm x 5 mm surface mount (QFN package).

PN: CMPA5259050S Package Type: 5 x 5 QFN

Typical Performance Over 5.0 - 5.9 GHz ($T_c = 25$ °C)

Parameter	5.2 GHz	5.5 GHz	5.9 GHz	Units
Small Signal Gain ^{1,2}	27.0	26.0	27.1	dB
Output Power ^{1,3}	48.2	48.1	48.6	dBm
Power Gain ^{1,3}	23.2	23.1	23.6	dB
Power Added Efficiency ^{1,3}	56	51	49	%

Notes:


Features

- >50% Typical Power Added Efficiency
- 27 dB Small Signal Gain
- 65 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- **High Temperature Operation**

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Civil and Military Pulsed **Radar Amplifiers**

 $^{^{1}}V_{DD}$ = 28 V, I_{DQ} = 500 mA

² Measured at Pin = -20 dBm

 $^{^3}$ Measured at Pin = 25 dBm and 150 μ s; Duty Cycle = 20%

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{\scriptscriptstyle DSS}$	84	VDC	25°C
Gate-source Voltage	$V_{_{GS}}$	-10, +2	VDC	25°C
Storage Temperature	T _{STG}	-55, +150	°C	
Maximum Forward Gate Current	I _G	18.96	mA	25°C
Maximum Drain Current	I _{DMAX}	4.5	A	
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 5.0 GHz to 5.9 GHz unless otherwise stated; T_c = 25 $^{\circ}$ C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{\rm GS(TH)}$	-2.6	-2.0	-1.6	V	$V_{DS} = 10 \text{ V}, I_{D} = 18.96 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-1.8	-	$V_{_{DC}}$	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	18.96	22.75	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BD}}$	84	_	-	٧	$V_{GS} = -8 \text{ V}, I_{D} = 18.96 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain	S21 ₁	-	27	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 5 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Small Signal Gain	S21 ₂	-	26.6	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 5 \text{ dBm}, Freq = 5.55 \text{ GHz}$
Small Signal Gain	S21 ₃	-	27.2	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 5 \text{ dBm}, Freq = 5.9 \text{ GHz}$
Output Power	P _{OUT1}	_	47.8	_	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 25 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Output Power	P_{OUT2}	-	47.8	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 25 \text{ dBm}, Freq = 5.55 \text{ GHz}$
Output Power	Роитз	-	48.1	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 25 \text{ dBm}, Freq = 5.9 \text{ GHz}$
Power Added Efficiency	$PAE_{\scriptscriptstyle 1}$	-	54	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 25 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Power Added Efficiency	PAE ₂	-	53	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 25 \text{ dBm}, Freq = 5.55 \text{ GHz}$
Power Added Efficiency	PAE ₃	-	50	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 25 \text{ dBm}, Freq = 5.9 \text{ GHz}$
Output Mismatch Stress	VSWR	-	-	3:1	Ψ	No damage at all phase angles

Notes:

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	$T_{_{\!J}}$	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{\theta JC}$	1.39	°C/W	Pulse Width = 150 μs, Duty Cycle =20%

Notes:

¹ Scaled from PCM data

² Measured in CMPA5259050S high volume test fixture at 5.2, 5.55 and 5.9 GHz and may not show the full capability of the device due to source inductance and thermal performance.

 $^{^3}$ Unless otherwise noted: Pulse Width = 25 μ s, Duty Cycle = 1%

 $^{^{\}rm 1}$ Measured for the CMPA5259050S at P $_{\rm DISS}$ = 64 W

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pulse Width = 150 μ s, Duty Cycle = 20%, Pin = 25 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 1. Output Power vs Frequency as a Function of Temperature

53.0

51.8

60.5

48.0

48.0

48.0

46.8

44.3

45.5

-85 °C
-25 °C
-40 °C

Frequency (GHz)

as a Function of Input Power

53.0

51.8

50.5

48.0

48.0

48.0

48.0

23 dBm

24 dBm

24 dBm

226 dBm

27 dBm

27 dBm

44.3

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

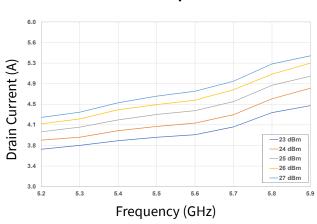
Frequency (GHz)

Figure 2. Output Power vs Frequency

Figure 3. Power Added Eff. vs Frequency
as a Function of Temperature

71.0
66.6
62.3
49.1
49.1
44.8
36.0
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Frequency (GHz)


Figure 4. Power Added Eff. vs Frequency
as a Function of Input Power

68.0
64.3
64.3
49.3
49.3
45.5
26 dBm
26 dBm
27 dBm
27 dBm
Frequency (GHz)

Orange Control (A) The second of the second

Figure 5. Drain Current vs Frequency

as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pulse Width = 150 μ s, Duty Cycle = 20%, Pin = 25 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 7. Output Power vs Frequency as a Function of VD

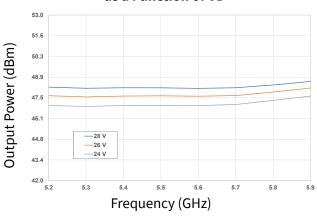


Figure 8. Output Power vs Frequency as a Function of IDQ

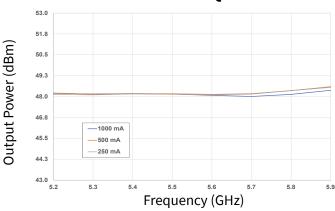


Figure 9. Power Added Eff. vs Frequency as a Function of VD

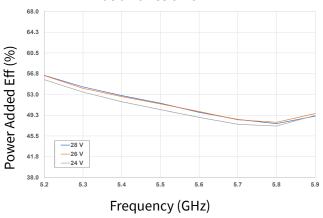


Figure 10. Power Added Eff. vs Frequency as a Function of IDQ

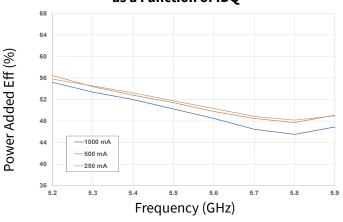


Figure 11. Drain Current vs Frequency as a Function of VD

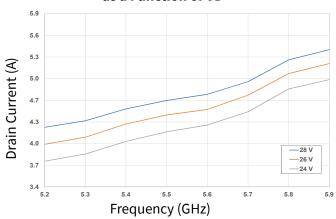
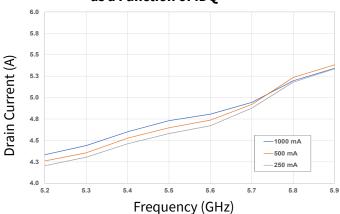



Figure 12. Drain Current vs Frequency as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pulse Width = 150 μ s, Duty Cycle = 20%, Pin = 25 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 13. Output Power vs Input Power as a Function of Frequency

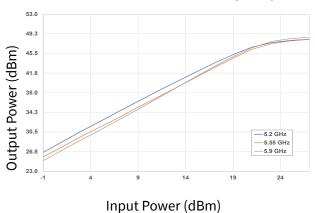
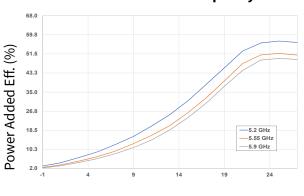



Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

Input Power (dBm)

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

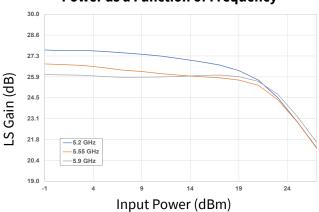


Figure 16. Drain Current vs Input Power as a Function of Frequency

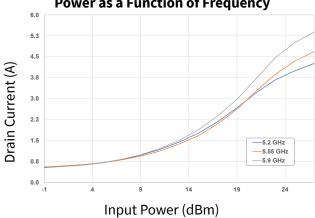
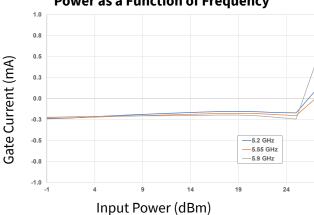



Figure 17. Gate Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pulse Width = 150 μ s, Duty Cycle = 20%, Pin = 25 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 18. Output Power vs Input
Power as a Function of Temperature

48.9

44.8

40.6

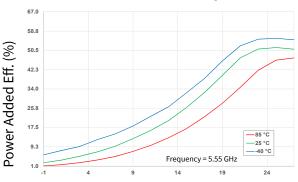
44.8

40.6

28.3

Frequency = 5.55 GHz

28.7


28.7

28.7

20.0

1 4 9 14 19 24

Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

Input Power (dBm)

Input Power (dBm)

Power as a Function of Temperature

5.0

4.4

3.8

3.8

1.9

1.3

1.3

1.4

9

14

19

24

Input Power (dBm)

Figure 21. Drain Current vs Input

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pulse Width = 150 μ s, Duty Cycle = 20%, Pin = 25 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 23. Output Power vs Input Power as a Function of IDQ

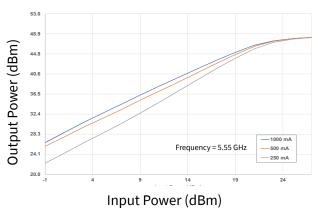


Figure 24. Power Added Eff. vs Input Power as a Function of IDQ

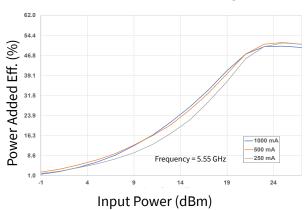


Figure 25. Large Signal Gain vs Input Power as a Function of IDQ

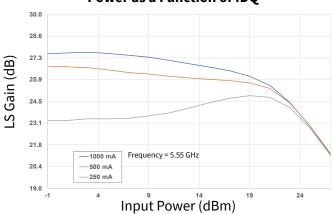


Figure 26. Drain Current vs Input Power as a Function of IDQ

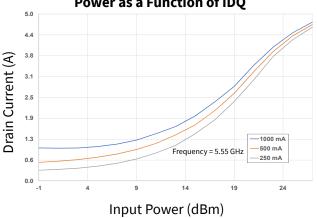


Figure 27. Gate Current vs Input Power as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pulse Width = 150 μ s, Duty Cycle = 20%, Pin = 25 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

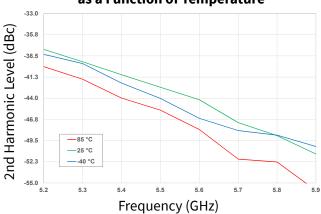


Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

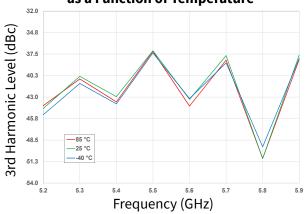


Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

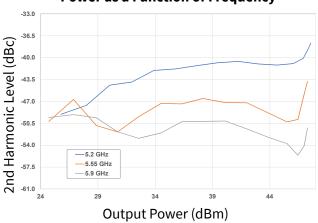


Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

Figure 32. 2nd Harmonic vs Output Power as a Function of IDQ

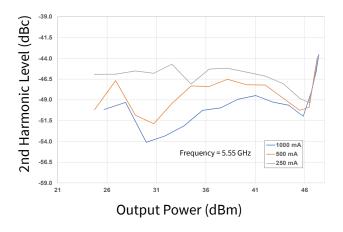
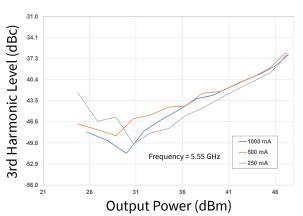



Figure 33. 3rd Harmonic vs Output Power as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pin = -20 dBm, $T_{BASE} = +25 \text{ }^{\circ}\text{C}$

Figure 34. Gain vs Frequency as a **Function of Temperature** 40 30 20 10 -20 -30 -25C -40

Frequency (GHz)

Figure 36. Input RL vs Frequency as a **Function of Temperature** -10 -35

S11 (dB) Frequency (GHz)

Function of Temperature -15 -25C Frequency (GHz)

Figure 38. Output RL vs Frequency as a

Figure 35. Gain vs Frequency as a **Function of Temperature** S21 (dB) -25C Frequency (GHz)

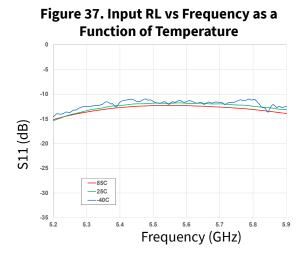
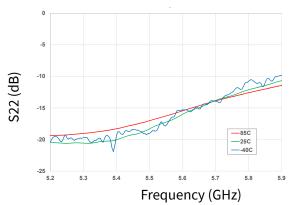



Figure 39. Output RL vs Frequency as a **Function of Temperature**

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 500 \text{ mA}$, Pin = -20 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 42. Input RL vs Frequency as a Function Voltage

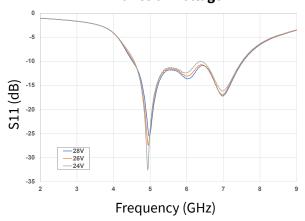


Figure 44. Output RL vs Frequency as a Function of Voltage

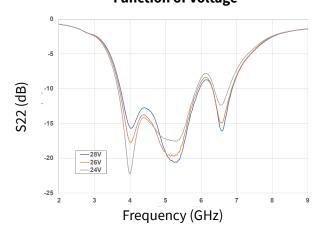


Figure 41. Gain vs Frequency as a Function of IDQ

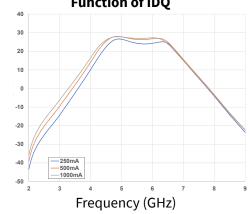
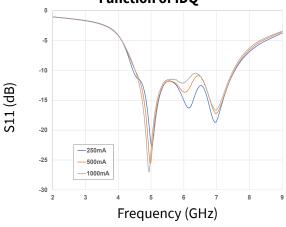
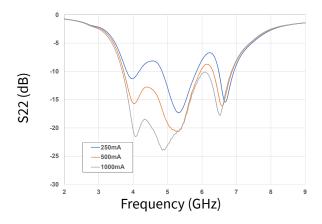
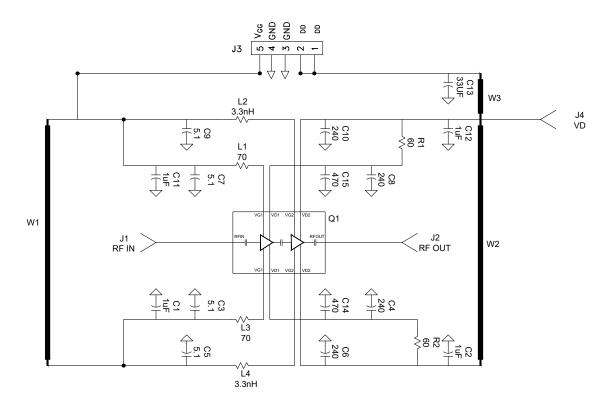
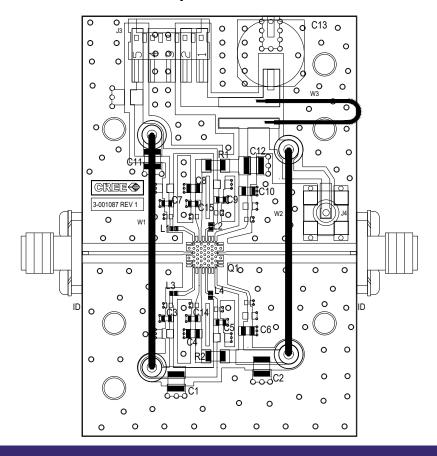


Figure 43. Input RL vs Frequency as a Function of IDQ

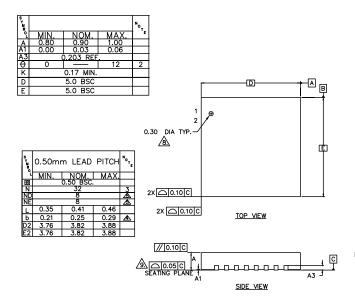

Figure 45. Output RL vs Frequency as a Function of IDQ

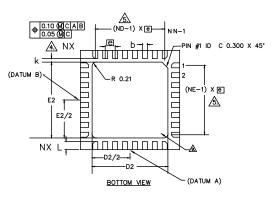
CMPA5259050S-AMP1 Demonstration Amplifier Schematic

CMPA5259050S-AMP1 Demonstration Amplifier Circuit Outline

CMPA5259050S-AMP1 Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C13	CAP, 33 UF, 20%, G CASE	1
C1, C2, C11, C12	CAP, 1.0UF, 100V, 10%, X7R, 1210	4
C3, C5, C7, C9	CAP, 5.1pF, +/-0.05pF, 0603, ATC, 600S	4
C4, C6, C8, C10	CAP, 240 PF +/-5%, 0805, ATC, 600F	4
C14, C15	470pF, NPO/COG 0603	2
L2, L4	INDUCTOR, SMT, 0402, 3.3nH, 5%	2
L1, L3	Ferrite bead, 70 ohm, 780mA, 0402	2
R1, R2	Ferrite bead, 60 ohm, 3.7A, 18806	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1	WIRE, BLACK, 20 AWG ~ 1.5"	1
W2	WIRE, BLACK, 20 AWG ~ 1.3"	3
W3	WIRE, BLACK, 20 AWG ~ 1.5"	3
	PCB, TEST FIXTURE, RF35, 0.010", 5X5 2-STAGE, QFN	1
	HEATSINK, 6X6 QFN, 3-STAGE 2.600 X 1.700 X 0.250	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA5259050S	1


Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA5259050S (Package 5 x 5 QFN)

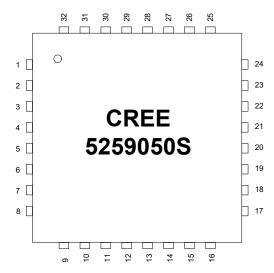
NOTES:

- OTES:

 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M. 1994.

 2. ALL DIMENSIONS ARE IN MILLIMETERS, & IS IN DEGREES.

 3. N IS THE TOTAL NUMBER OF TERMINALS.


 4. DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.

 5. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.

 6. MAX. PACKAGE WARPAGE ISR 0.05 mm.

 7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.

- 9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
 10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-220
 11. ALL PLATED SURFACES ARE 100% TIN MATTE 0.010 mm +/- 0.005 mm.

PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	NC	29	NC
2	NC	16	VD2A	30	VD1B
3	RFGND	17	NC	31	NC
4	RFIN	18	NC	32	VG1B
5	RFGND	19	NC		
6	NC	20	RFGND		
7	NC	21	RFOUT		
8	NC	22	RFGND		
9	VG1A	23	NC		
10	NC	24	NC		
11	VD1A	25	VD2B		
12	NC	26	NC		
13	VG2A	27	NC		
14	NC	28	VG2B		

Part Number System

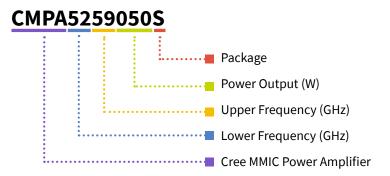


Table 1.

Parameter	Value	Units
Lower Frequency	5.0	GHz
Upper Frequency	5.9	GHz
Power Output	50	W
Package	Surface Mount	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

CMPA5259050S 1.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5259050S	GaN HEMT	Each	
CMPA5259050S-AMP1	Test board with GaN MMIC installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

 $@ 2020\ Cree, Inc.\ All\ rights\ reserved.\ Wolfspeed \\ @ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree, Inc.\ All\ rights\ reserved.$